
 

 

 

DIGITAL IMAGE PROCESSING 

 

UNIT I 

Introduction and  Image Processing 

 

 

 

Digital Image Processing (DIP) is a software which is used to manipulate the digital images 

by the use of computer system. It is also used to enhance the images, to get some important 

information from it. For example: Adobe Photoshop, MATLAB, etc. 

It is also used in the conversion of signals from an image sensor into the digital images. 

A certain number of algorithms are used in image processing. 

o Digital Image Processing is a software which is used in image processing. For example: 

computer graphics, signals, photography, camera mechanism, pixels, etc. 

o Digital Image Processing provides a platform to perform various operations like image 

enhancing, processing of analog and digital signals, image signals, voice signals etc. 

o It provides images in different formats. 

Digital Image Processing allows users the following tasks 

o Image sharpening and restoration: The common applications of Image sharpening and 

restoration are zooming, blurring, sharpening, grayscale conversion, edges detecting, Image 

recognition, and Image retrieval, etc. 

o Medical field: The common applications of medical field are Gamma-ray imaging, PET scan, 

X-Ray Imaging, Medical CT, UV imaging, etc. 

o Remote sensing: It is the process of scanning the earth by the use of satellite and 

acknowledges all activities of space. 

o Machine/Robot vision: It works on the vision of robots so that they can see things, identify 

them, etc. 

Characteristics of Digital Image Processing 

o It uses software, and some are free of cost. 

o It provides clear images. 



 

 

 

o Digital Image Processing do image enhancement to recollect the data through images. 

o It is used widely everywhere in many fields. 

o It reduces the complexity of digital image processing. 

o It is used to support a better experience of life. 

Advantages of Digital Image Processing 

o Image reconstruction (CT, MRI, SPECT, PET) 

o Image reformatting (Multi-plane, multi-view reconstructions) 

o Fast image storage and retrieval 

o Fast and high-quality image distribution. 

o Controlled viewing (windowing, zooming) 

Disadvantages of Digital Image Processing 

o It is very much time-consuming. 

o It is very much costly depending on the particular system. 

o Qualified persons can be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fundamental Steps of Digital Image Processing: 

 

1. Image Acquisition 

Image acquisition is the first step of the fundamental steps of DIP. In this stage, an image is 

given in the digital form. Generally, in this stage, pre-processing such as scaling is done. 

2. Image Enhancement 

Image enhancement is the simplest and most attractive area of DIP. In this stage details which 

are not known, or we can say that interesting features of an image is highlighted. Such as 

brightness, contrast, etc... 

3. Image Restoration 

Image restoration is the stage in which the appearance of an image is improved. 

4. Color Image Processing 

Color image processing is a famous area because it has increased the use of digital images on 

the internet. This includes color modeling, processing in a digital domain, etc.... 

 

 



 

 

 

5. Wavelets and Multi-Resolution Processing 

In this stage, an image is represented in various degrees of resolution. Image is divided into 

smaller regions for data compression and for the pyramidal representation. 

6. Compression 

Compression is a technique which is used for reducing the requirement of storing an image. It 

is a very important stage because it is very necessary to compress data for internet use. 

7. Morphological Processing 

This stage deals with tools which are used for extracting the components of the image, which 

is useful in the representation and description of shape. 

8. Segmentation 

In this stage, an image is a partitioned into its objects. Segmentation is the most difficult tasks 

in DIP. It is a process which takes a lot of time for the successful solution of imaging 

problems which requires objects to identify individually. 

9. Representation and Description 

Representation and description follow the output of the segmentation stage. The output is a 

raw pixel data which has all points of the region itself. To transform the raw data, 

representation is the only solution. Whereas description is used for extracting information's to 

differentiate one class of objects from another. 

10. Object recognition 

In this stage, the label is assigned to the object, which is based on descriptors. 

11. Knowledge Base 

Knowledge is the last stage in DIP. In this stage, important information of the image is 

located, which limits the searching processes. The knowledge base is very complex when the 

image database has a high-resolution satellite. 

 

 



 

 

 

Applications of Digital Image Processing 

Almost in every field, digital image processing puts a live effect on things and is growing 

with time to time and with new technologies. 

1) Image sharpening and restoration 

It refers to the process in which we can modify the look and feel of an image. It basically 

manipulates the images and achieves the desired output. It includes conversion, sharpening, 

blurring, detecting edges, retrieval, and recognition of images. 

2) Medical Field 

There are several applications under medical field which depends on the functioning of 

digital image processing. 

o Gamma-ray imaging 

o PET scan 

o X-Ray Imaging 

o Medical CT scan 

o UV imaging 

3) Robot vision 

There are several robotic machines which work on the digital image processing. Through 

image processing technique robot finds their ways, for example, hurdle detection root and 

line follower robot. 

4) Pattern recognition 

It involves the study of image processing, it is also combined with artificial intelligence such 

that computer-aided diagnosis, handwriting recognition and images recognition can be easily 

implemented. Now a days, image processing is used for pattern recognition. 



 

 

 

5) Video processing 

It is also one of the applications of digital image processing. A collection of frames or 

pictures are arranged in such a way that it makes the fast movement of pictures. It involves 

frame rate conversion, motion detection, reduction of noise and colour space conversion etc. 

 

 

 

Human Visual System 
Although the field of digital image processing is built on a foundation of mathematics, human 

intuition and analysis often play a role in the choice of one technique versus another, and this 

choice often is made based on subjective, visual judgments. Thus, developing an 

understanding of basic characteristics of human visual perception as a first step in our journey 

through this book is appropriate. In particular, our interest is in the elementary mechanics of 

how images are formed and perceived by humans. We are interested in learning the physical 

limitations of human vision in terms of factors that also are used in our work with digital 

images. Factors such as how human and electronic imaging devices compare in terms of 

resolution and ability to adapt to changes in illumination are not only interesting, they are 

also important from a practical point of view.  

STRUCTURE OF THE HUMAN EYE  

Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a sphere 

(with a diameter of about 20 mm) enclosed by three membranes: the cornea and sclera outer 

cover; the choroid; and the retina. The cornea is a tough, transparent tissue that covers the 

anterior surface of the eye. Continuous with the cornea, the sclera is an opaque membrane 

that encloses the remainder of the optic globe. The choroid lies directly below the sclera. This 

membrane contains a network of blood vessels that serve as the major source of nutrition to 

the eye. Even superficial 

 

 

 

 

 

 

 

 



 

 

 

 

injury to the choroid can lead to severe eye damage as a result of inflammation that restricts 

blood flow. The choroid coat is heavily pigmented, which helps reduce the amount of 

extraneous light entering the eye and the backscatter within the optic globe. At its anterior 

extreme, the choroid is divided into the ciliary body and the iris. The latter contracts or 

expands to control the amount of light that enters the eye. The central opening of the iris (the 

pupil) varies in diameter from approximately 2 to 8 mm. The front of the iris contains the 

visible pigment of the eye, whereas the back contains a black pigment. The lens consists of 

concentric layers of fibrous cells and is suspended by fibers that attach to the ciliary body. It 

is composed of 60% to 70% water, about 6% fat, and more protein than any other tissue in 

the eye. The lens is colored by a slightly yellow pigmentation that increases with age. In 

extreme cases, excessive clouding of the lens, referred to as cataracts, can lead to poor color 

discrimination and loss of clear vision. The lens absorbs approximately 8% of the visible 

light spectrum, with higher absorption at shorter wavelengths. Both infrared and ultraviolet 

light are absorbed by proteins within the lens and, in excessive amounts, can damage the eye. 

The innermost membrane of the eye is the retina, which lines the inside of the wall’s entire 

posterior portion. When the eye is focused, light from an object is imaged on the retina. 

Pattern vision is afforded by discrete light receptors distributed over the surface of the retina. 

There are two types of receptors: cones and rods. There are between 6 and 7 million cones in 

each eye. They are located primarily in the central portion of the retina, called the fovea, and 

are highly sensitive to color. Humans can resolve fine details because each cone is connected 

to its own nerve end. Muscles rotate the eye until the image of a region of interest falls on the 

fovea. Cone vision is called photopic or bright-light vision. The number of rods is much  



 

 

 

larger: Some 75 to 150 million are distributed over the retina. The larger area of distribution, 

and the fact that several rods are connected to a single nerve ending, reduces the amount of 

detail discernible by these receptors. Rods capture an overall image of the field of view. They 

are not involved in color vision, and are sensitive to low levels of illumination. For example, 

objects that appear brightly colored in daylight appear as colorless forms in moonlight 

because only the rods are stimulated. This phenomenon is known as scotopic or dim-light 

vision. Figure 2.2 shows the density of rods and cones for a cross section of the right eye, 

passing through the region where the optic nerve emerges from the eye. The absence of 

receptors in this area causes the so-called blind spot (see Fig. 2.1). Except for this region, the 

distribution of receptors is radially symmetric about the fovea. Receptor density is measured 

in degrees from the visual axis. Note in Fig. 2.2 that cones are most dense in the center area 

of the fovea, and that rods increase in density from the center out to approximately 20° off 

axis. Then, their density decreases out to the periphery of the retina. The fovea itself is a 

circular indentation in the retina of about 1.5 mm in diameter, so it has an area of 

approximately 1.77 mm2 . As Fig. 2.2 shows, the density of cones in that area of the retina is 

on the order of 150,000 elements per mm2 . Based on these figures, the number of cones in 

the fovea, which is the region of highest acuity 

 

in the eye, is about 265,000 elements. Modern electronic imaging chips exceed this number 

by a large factor. While the ability of humans to integrate intelligence and experience with 

vision makes purely quantitative comparisons somewhat superficial, keep in mind for future 

discussions that electronic imaging sensors can easily exceed the capability of the eye in 

resolving image detail.  

IMAGE FORMATION IN THE EYE 

 In an ordinary photographic camera, the lens has a fixed focal length. Focusing at various 

distances is achieved by varying the distance between the lens and the imaging plane, where 

the film (or imaging chip in the case of a digital camera) is located. In the human eye, the 

converse is true; the distance between the center of the lens and the imaging sensor (the 

retina) is fixed, and the focal length needed to achieve proper focus is obtained by varying the  



 

 

 

shape of the lens. The fibers in the ciliary body accomplish this by flattening or thickening 

the lens for distant or near objects, respectively. The distance between the center of the lens 

and the retina along the visual axis is approximately 17 mm. The range of focal lengths is 

approximately 14 mm to 17 mm, the latter taking place when the eye is relaxed and focused 

at distances greater than about 3 m. The geometry in Fig. 2.3 illustrates how to obtain the 

dimensions of an image formed on the retina. For example, suppose that a person is looking 

at a tree 15 m high at a distance of 100 m. Letting h denote the height of that object in the 

retinal image, the geometry of Fig. 2.3 yields 15 100 17 = h or h = 2 5. mm. As indicated 

earlier in this section, the retinal image is focused primarily on the region of the fovea. 

Perception then takes place by the relative excitation of light receptors, which transform 

radiant energy into electrical impulses that ultimately are decoded by the brain.  

BRIGHTNESS ADAPTATION AND DISCRIMINATION  

Because digital images are displayed as sets of discrete intensities, the eye’s ability to 

discriminate between different intensity levels is an important consideration 

 

in presenting image processing results. The range of light intensity levels to which the human 

visual system can adapt is enormous—on the order of 1010— from the scotopic threshold to 

the glare limit. Experimental evidence indicates that subjective brightness (intensity as 

perceived by the human visual system) is a logarithmic function of the light intensity incident 

on the eye. Figure 2.4, a plot of light intensity versus subjective brightness, illustrates this 

characteristic. The long solid curve represents the range of intensities to which the visual 

system can adapt. In photopic vision alone, the range is about 106 . The transition from 

scotopic to photopic vision is gradual over the approximate range from 0.001 to 0.1 

millilambert (−3 to −1 mL in the log scale), as the double branches of the adaptation curve in 

this range show. 

 

IMAGE SAMPLING AND QUANTIZATION  

As discussed in the previous section, there are numerous ways to acquire images, but our 

objective in all is the same: to generate digital images from sensed data. The output of most 

sensors is a continuous voltage waveform whose amplitude and spatial behavior are related to 

the physical phenomenon being sensed. To create a digital image, we need to convert the 

continuous sensed data into a digital format. This requires two processes: sampling and  

 



 

 

 

quantization. Figure 2.16(a) shows a continuous image f that we want to convert to digital 

form. An image may be continuous with respect to the x- and y-coordinates, and also in 

 

amplitude. To digitize it, we have to sample the function in both coordinates and also in 

amplitude. Digitizing the coordinate values is called sampling. Digitizing the amplitude 

values is called quantization. The one-dimensional function in Fig. 2.16(b) is a plot of 

amplitude (intensity level) values of the continuous image along the line segment AB in Fig. 

2.16(a). The random variations are due to image noise. To sample this function, we take 

equally spaced samples along line AB, as shown in Fig. 2.16(c). The samples are shown as 

small dark squares superimposed on the function, and their (discrete) spatial locations are 

indicated by corresponding tick marks in the bottom of the figure. The set of dark squares 

constitute the sampled function. However, the values of the samples still span (vertically) a 

continuous range of intensity values. In order to form a digital function, the intensity values 

also must be converted (quantized) into discrete quantities. The vertical gray bar in Fig. 

2.16(c) depicts the intensity scale divided into eight discrete intervals, ranging from black to 

white. The vertical tick marks indicate the specific value assigned to each of the eight 

intensity intervals. The continuous intensity levels are quantized by assigning one of the eight 

values to each sample, depending on the vertical proximity of a sample to a vertical tick 

mark. The digital samples resulting from both sampling and quantization are shown as white 

squares in Fig. 2.16(d). Starting at the top of the continuous image and carrying out this 

procedure downward, line by line, produces a two-dimensional digital image. It is implied in 

Fig. 2.16 that, in addition to the number of discrete levels used, the accuracy achieved in 

quantization is highly dependent on the noise content of the sampled signal. 

 



 

 

 

 

In practice, the method of sampling is determined by the sensor arrangement used to generate 

the image. When an image is generated by a single sensing element combined with 

mechanical motion, as in Fig. 2.13, the output of the sensor is quantized in the manner 

described above. However, spatial sampling is accomplished by selecting the number of 

individual mechanical increments at which we activate the sensor to collect data. Mechanical 

motion can be very exact so, in principle, there is almost no limit on how fine we can sample 

an image using this approach. In practice, limits on sampling accuracy are determined by 

other factors, such as the quality of the optical components used in the system. When a 

sensing strip is used for image acquisition, the number of sensors in the strip establishes the 

samples in the resulting image in one direction, and mechanical motion establishes the 

number of samples in the other. Quantization of the sensor outputs completes the process of 

generating a digital image. When a sensing array is used for image acquisition, no motion is 

required. The number of sensors in the array establishes the limits of sampling in both 

directions. Quantization of the sensor outputs is as explained above. Figure 2.17 illustrates 

this concept. Figure 2.17(a) shows a continuous image projected onto the plane of a 2-D 

sensor. Figure 2.17(b) shows the image after sampling and quantization. The quality of a 

digital image is determined to a large degree by the number of samples and discrete intensity 

levels used in sampling and quantization. However, as we will show later in this section, 

image content also plays a role in the choice of these parameters. 

REPRESENTING DIGITAL IMAGES  

Let f (s ,t ) represent a continuous image function of two continuous variables, s and t. We 

convert this function into a digital image by sampling and quantization, as explained in the 

previous section. Suppose that we sample the continuous image into a digital image, f xy ( , ), 

containing M rows and N columns, where (,) x y are discrete coordinates. For notational 

clarity and convenience, we use integer values for these discrete coordinates: x M = − 012 ,,, , 

… 1 and y N = − 012 ,,, , … 1. Thus, for example, the value of the digital image at the origin 

is f( , 0 0), and its value at the next coordinates along the first row is f( , 0 1). Here, the 

notation (0, 1) is used to denote the second sample along the first row. It does not mean that 

these are the values of the physical coordinates when the image was sampled. In general, the 

value of a digital image at any coordinates (,) x y is denoted f xy ( , ), where x and y are  



 

 

 

integers. When we need to refer to specific coordinates (, ) i j , we use the notation fij ( , ), 

where the arguments are integers. The section of the real plane spanned by the coordinates of 

an image is called the spatial domain, with x and y being referred to as spatial variables or 

spatial coordinates. Figure 2.18 shows three ways of representing f xy ( , ). Figure 2.18(a) is a 

plot of the function, with two axes determining spatial location and the third axis being the 

values of f as a function of x and y. This representation is useful when working with 

grayscale sets whose elements are expressed as triplets of the form (,,) x y z , where x and y 

are spatial coordinates and z is the value of f at coordinates ( , ). x y We will work with this 

representation briefly in Section 2.6. The representation in Fig. 2.18(b) is more common, and 

it shows f xy ( , ) as it would appear on a computer display or photograph. Here, the intensity 

of each point in the display is proportional to the value of f at that point. In this figure, there 

are only three equally spaced intensity values. If the intensity is normalized to the interval [ , 

], 0 1 then each point in the image has the value 0, 0.5, or 1. A monitor or printer converts 

these three values to black, gray, or white, respectively, as in Fig. 2.18(b). This type of 

representation includes color images, and allows us to view results at a glance. As Fig. 

2.18(c) shows, the third representation is an array (matrix) composed of the numerical values 

of f xy ( , ). This is the representation used for computer processing. In equation form, we 

write the representation of an M N* numerical array as 

 

The right side of this equation is a digital image represented as an array of real numbers. Each 

element of this array is called an image element, picture element, pixel, or pel. We use the 

terms image and pixel throughout the book to denote a digital image and its elements. Figure 

2.19 shows a graphical representation of an image array, where the x- and y-axis are used to 

denote the rows and columns of the array. Specific pixels are values of the array at a fixed 

pair of coordinates. As mentioned earlier, we generally use fij ( , ) when referring to a pixel 

with coordinates ( , ). i j We can also represent a digital image in a traditional matrix form: 

 

Clearly, a= fij(i,j)   so Eqs. (2-9) and (2-10) denote identical arrays. 

 

 

 



 

 

 

 

As Fig. 2.19 shows, we define the origin of an image at the top left corner. This is a 

convention based on the fact that many image displays (e.g., TV monitors) sweep an image 

starting at the top left and moving to the right, one row at a time. More important is the fact 

that the first element of a matrix is by convention at the top left of the array. Choosing the 

origin of f xy ( , ) at that point makes sense mathematically because digital images in reality 

are matrices. In fact, as you will see, sometimes we use x and y interchangeably in equations 

with the rows (r) and columns (c) of a matrix. It is important to note that the representation in 

Fig. 2.19, in which the positive x-axis extends downward and the positive y-axis extends to 

the right, is precisely the right-handed Cartesian coordinate system with which you are 

familiar,† but shown rotated by 90° so that the origin appears on the top, left. 

Spatial and grey level resolution 
SPATIAL AND INTENSITY RESOLUTION  

Intuitively, spatial resolution is a measure of the smallest discernible detail in an image. 

Quantitatively, spatial resolution can be stated in several ways, with line pairs per unit 

distance, and dots (pixels) per unit distance being common measures. Suppose that we 

construct a chart with alternating black and white vertical lines, each of width W units (W 

can be less than 1). The width of a line pair is thus 2W, and there are W 2 line pairs per unit 

distance. For example, if the width of a line is 0.1 mm, there are 5 line pairs per unit distance  



 

 

 

 

(i.e., per mm). A widely used definition of image resolution is the largest number of 

discernible line pairs per unit distance (e.g., 100 line pairs per mm). Dots per unit distance is 

a measure of image resolution used in the printing and publishing industry. In the U.S., this 

measure usually is expressed as dots per inch (dpi). To give you an idea of quality, 

newspapers are printed with a resolution of 75 dpi, magazines at 133 dpi, glossy brochures at 

175 dpi, and the book page at which you are presently looking was printed at 2400 dpi. To be 

meaningful, measures of spatial resolution must be stated with respect to spatial units. Image 

size by itself does not tell the complete story. For example, to say that an image has a 

resolution of 1024 1024 * pixels is not a meaningful statement without stating the spatial 

dimensions encompassed by the image. Size by itself is helpful only in making comparisons 

between imaging capabilities. For instance, a digital camera with a 20-megapixel CCD 

imaging chip can be expected to have a higher capability to resolve detail than an 8-

megapixel camera, assuming that both cameras are equipped with comparable lenses and the 

comparison images are taken at the same distance. Intensity resolution similarly refers to the 

smallest discernible change in intensity level. We have considerable discretion regarding the 

number of spatial samples (pixels) used to generate a digital image, but this is not true 

regarding the number of intensity levels. Based on hardware considerations, the number of 

intensity levels usually is an integer power of two, as we mentioned when discussing Eq. (2-

11). The most common number is 8 bits, with 16 bits being used in some applications in 

which enhancement of specific intensity ranges is necessary. Intensity quantization using 32 

bits is rare. Sometimes one finds systems that can digitize the intensity levels of an image 

using 10 or 12 bits, but these are not as common. Unlike spatial resolution, which must be 

based on a per-unit-of-distance basis to be meaningful, it is common practice to refer to the 

number of bits used to quantize intensity as the “intensity resolution.” For example, it is 

common to say that an image whose intensity is quantized into 256 levels has 8 bits of 

intensity resolution. However, keep in mind that discernible changes in intensity are 

influenced also by noise and saturation values, and by the capabilities of human perception to 

analyze and interpret details in the context of an entire scene (see Section 2.1). The following 

two examples illustrate the effects of spatial and intensity resolution on discernible detail. 

Later in this section, we will discuss how these two parameters interact in determining 

perceived image quality. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

SOME BASIC RELATIONSHIPS BETWEEN 

PIXELS  

 

 

 

 

 

 

 



 

 

 

 

paragraph, a 4-path between the two regions does not exist, so their union is not a connected 

set). 

 

 



 

 

 

 

 
 
 
 
 
  



 

 

 

 

Color Fundamentals 
In this chapter we discuss fundamentals of color image processing using the Image 

Processing Toolbox and extend some of its functionality by developing additional color 

generation and transformation functions. 

Color Image Representation in MATLAB As noted in Section 2.6, the Image 

Processing Toolbox handles color images either as indexed images or RGB (red, green, blue) 

images. In this section we discuss these two image types in some detail. 7.1.1 RGB Images 

An RGB color image is an M X N X 3 array of color pixels, where each color pixel is a triplet 

corresponding to the red, green, and blue components of an RGB image at a specific spatial 

location (see Fig. 7.1 ). An RGB image may be viewed as a "stack" of three gray-scale 

images that, when fed into the red, green, and blue inputs of a color monitor, produce a color 

image on the screen. By convention, the three images forming an RGB color image are 

referred to as the red, green, and blue component images. The data class of the component 

images determines their range of values. If an RGB image is of class double, the range of 

values is [O, 1 ]. Similarly, the range of values is [O, 255] or [O, 65535] for RGB images of 

class uint8 or uint 1 6, respectively. The number of bits used to represent the pixel values of 

the component images determines the bit depth of an RGB image. For example, if each 

component image is an 8-bit image, the corresponding RGB image is said to be 24 bits deep. 

Generally, the number of bits in all component images is the same. In this case, the number of 

possible colors in an RGB image is (2" ) 3 where b is the number of bits in each component 

image. For an 8-bit image, the number is 16,777,216 colors. Let fR, fG, and fB represent 

three RGB component images. An RGB image is formed from these images by using the cat 

(concatenate ) operator to stack the images: 

 



 

 

 
rgb_image = cat (3, fR , fG , fB) 

 

The order in which the images are placed in the operand matters. In general, cat ( dim 

, A 1 , A2 , . . . ) concatenates the arrays (which must be of the same size) along the 

dimension specified by dim. For example, if dim = 1, the arrays are arranged vertically, if 

dim = 2, they are arranged horizontally, and, if dim = 3, they are stacked in the third 

dimension, as in Fig. 7.1. If all component images are identical, the result is a gray-scale 

image. Let rgb_image denote an RGB image. The following commands extract the three 

component images: 

 

>> fR rgb_image (: ,  :,  1 ) ;  

>> fG rgb_image (: ,  :,  2 ) ;  

>> fB rgb_image (: , :,  3 ) ; 

 

The RGB color space usually is shown graphically as an RGB color cube, as depicted 

in Fig. 7.2. The vertices of the cube are the primary (red, green, and blue) and secondary 

(cyan, magenta, and yellow) colors of light. To view the color cube from any perspective, use 

custom function rgbcube: 

 

rgbcube ( vx, vy , vz ) 

 

Typing rgbcube ( vx , vy , vz ) at the prompt produces an RGB cube on the MATLAB 

desktop, viewed from point ( vx , vy , vz ). The resulting image can be saved to disk using 

function print, discussed in Section 2.4. The code for function rgbcube follows. 

 

 
 

FIGURE 7.2 (a) Schematic of the RGB color cube showing the primary and 

secondary colors of light at the vertices. Points along the main diagonal have gray values 

from black at the origin to white at point (1 . 1 , 1 ). (b)The RGB color cube. 

 



 

 

 
Converting Between Color Spaces (Color Model) 

 As explained in the previous section, the toolbox represents colors as RGB values, 

directly in an RGB image, or indirectly in an indexed image, where the color map is stored in 

RGB format. However, there are other color spaces (also called color models) whose use in 

some applications may be more convenient and/or meaningful than RGB. These models are 

transformations of the RGB model and include the NTSC, YCbCr, HSY, CMY, CMYK, and 

HSI color spaces. The toolbox provides conversion functions from RGB to the NTSC, 

YCbCr, HSY and CMY color spaces, and back. 

NTSC Color Space The NTSC color system is used in analog television. One of the main 

advantages of this format is that gray-scale information is separate from color data, so the 

same signal can be used for both color and monochrome television sets. In the NTSC format, 

image data consists of three components: luminance (Y), hue (!), and saturation ( Q), where 

the choice of the letters YIQ is conventional. The luminance component represents gray-scale 

information, and the other two components carry the color information of a TV signal. The 

YIQ components are obtained from the RGB components of an image using the linear 

transformation 

 
Note that the elements of the first row sum to 1 and the elements of the next two rows 

sum to 0. This is as expected because for a grayscale image all the RGB components are 

equal, so the I and Q components should be 0 for such an image. Function rgb2ntsc performs 

the preceding transformation:  

yiq_image = rgb2ntsc ( rgb_image)  

where the input RGB image can be of class uint8, uint1 6, or double. The output 

image is an M X N X 3 array of class double. Component image  

yiq_image (:, : , 1) is the luminance,  

yiq_image ( : , : , 2) is the hue, and 

 yiq_image ( : , : , 3) is the saturation image. 

 

The YCbCr Color Space  

The YCbCr color space is used extensively in digital video. In this format, luminance 

information is represented by a single component, Y, and color information is stored as two 

color-difference components, Cb and Cr. Component Cb is the difference between the blue 

component and a reference value, and component Cr is the difference between the red 

component and a reference value (Poynton (1 996]). The transformation used by the toolbox 

to convert from RGB to YCbCr is 

 



 

 

 
The conversion function is 

 ycbc r_image = rgb2ycbcr ( rgb_image ) 

 

 The input RGB image can be of class uintB, uint 16, or double. The output image is of the 

same class as the input. A similar transformation converts from YCbCr back to RGB:  

                     rgb_image = ycbr2rgb(ycbcr_image)  

 

The input YCbCr image can be of class uint8, uint 1 6, or double. The output image is of the 

same class as the input. 

 

The HSV Color Space  

HSY (hue, saturation, value) is one of several color systems used by people to select 

colors (e.g., of paints or inks) from a color wheel or palette. This color system is considerably 

closer than the RGB system to the way in which humans experience and describe color 

sensations. In artists' terminology, hue, saturation, and value refer approximately to tint, 

shade, and tone. The HSY color space is formulated by looking at the RGB color cube along 

its gray axis (the axis joining the black and white vertices), which results in the hexagonally 

shaped color palette shown in Fig. 7.5(a). As we move along the vertical (gray) axis in Fig. 

7.5(b), the size of the hexagonal plane that is perpendicular to the axis changes, yielding the 

volume depicted in the figure. Hue is expressed as an angle around a color hexagon, typically 

using the red axis as the reference (0°) axis. The value component is measured along the axis 

of the cone. 

 

 
in the center of the full color hexagon in Fig. 7.5(a). Thus, this axis represents all 

shades of gray. Saturation (purity of the color) is measured as the distance from the V axis. 

The HSY color system is based on cylindrical coordinates. Converting from RGB to HSY 

entails developing the equations to map RGB values (which are in Cartesian coordinates) to 

cylindrical coordinates. This topic is treated in detail in most texts on computer graphics  so 



 

 

we do not develop the equations here. The MATLAB function for converting from RGB to 

HSY is rgb2hsv, whose syntax is 

 hsv_image = rgb2hsv ( rgb_image ) 
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